Geo-Metric-Affine-Projective Computing

Speaker: Ambjörn Naeve, Ph.D., Senior researcher

Affiliation: Centre for user-oriented IT-Design (CID) Dept. of Numerical Analysis and Computing Science Royal Institute of Technology (KTH)

100 44 Stockholm, Sweden

email-address: amb@nada.kth.se

web-site: cid.nada.kth.se/il

SIGGRAPH

Projective Drawing Board (PDB)

PDB is an interactive program for doing plane projective geometry that will be used to illustrate this lecture.

PDB has been developed by Harald Winroth and Ambjörn Naeve as a part of Harald's doctoral thesis work at the Computational Vision and Active Perception (CVAP) laboratory at KTH.

PDB is avaliable as freeware under Linux. www.nada.kth.se/~amb/pdb-dist/linux/pdb2.5.tar.gz

SIGGRAPH

Geometric algebra in *n*-dim Euclidean space

Underlying vector space \mathbf{V}^n with ON-basis e_1, \dots, e_n .

Geometric algebra: $G = G_n \equiv G(V^n)$ has 2^n dimensions.

A multivector is a sum of k-vectors: $M = \sum_{k=0}^{n} \langle M \rangle_k$

A k-vector is a sum of k-blades: $\langle M \rangle_k = A_k + B_k + \dots$

<u>A k-blade</u> = blade of grade k: $B_k = b_1 \wedge b_2 \wedge ... \wedge b_k$

Note: $B_k \neq 0 \Leftrightarrow b_1, \dots, b_k$ are linearly independent.

<u>Hence</u>: the grade of a blade is the dimension of the

subspace that it spans.

SIGGRAPH

Blades correspond to geometric objects

blade o <u>f grade</u>	equivalence class of directed	equal orientation and
_1	line segments	length
-2	surface regions	area
-3	3-dim regions	volume
÷	:	<u> </u>
<u>-k</u>	k-dim regions	k-volume

Pseudoscalars and duality

<u>Def</u>: A *n*-blade in \mathbf{G}_n is called a *pseudoscalar*.

 $P = p_1 \wedge p_2 \wedge ... \wedge p_n$ A pseudoscalar:

 $I = e_1 \wedge e_2 \wedge \ldots \wedge e_n$ A unit pseudoscalar:

 $[P] = PI^{-1}$ The *bracket* of P:

 $Dual(x) = xI^{-1}$ The *dual* of a multivector \mathcal{X} :

 $Dual(x) = x^*$ Notation:

If A is a k-blade, then A^* is a (n-k)-blade. Note:

SIGGRAPH

The subspace of a blade

Fact: To every non-zero *m*-blade $B = b_1 \wedge ... \wedge b_m$ there corresponds a *m*-dim subspace $\overline{B} \subset \mathbf{V}^n$ with $\overline{B} = \text{Linspan}\{b_1, \dots, b_m\}$

$$= \operatorname{Linspan} \{ b \in \mathbf{V}^n : b \wedge B = 0 \}.$$

Fact: If e_1, e_2, \dots, e_m is an ON-basis for \overline{B} and if $b_i = \sum_{k=0}^{m} b_{ik} e_k$ for i = 1,...,m,

> then $B = (\det b_{ik})e_1 \wedge e_2 \wedge ... \wedge e_m$ $= (\det b_{i})e_{1}e_{2}\dots e_{m}$

SIGGRAPH

Dual subspaces <=> orthogonal complements

Fact: If A is a non-zero m-blade $\overline{A}^* = \overline{A}^\perp$.

<u>Proof</u>: We can WLOG choose an ON-basis for \mathbf{V}^n

 $A = \mathbf{I} e_1 e_2 \dots e_m$ and $I = e_1 e_2 \dots e_n$.

We then have

 $A^* = AI^{-1} = \pm \mathbf{1}e_{\dots} \dots e_{n}$

which implies that

 $\overline{A}^* = \overline{A}^{\perp}$

SIGGRAPH

The join and the meet of two blades

 $\underline{\text{Def}}$: Given blades A and B, if there exists a blade C such that $A = BC = B \wedge C$ we say that A is a *dividend* of B and B is a *divisor* of A.

Def: The *join* of blades A and Bis a common dividend of lowest grade.

Def: The meet of blades A and Bis a common divisor of greatest grade.

The join and meet provide a representation in geometric algebra of the *lattice algebra* of *subspaces* of \mathbf{V}^n .

SIGGRAPH

Join of two blades <=> sum of their subspaces

<u>Def</u>: For two blades *A* and *B* with $A \land B \neq 0$

 $Join(A, B) = A \wedge B$ we can define:

Meet of blades <=> intersection of subspaces

If blades $A, B \neq 0$ and $\overline{A} + \overline{B} = \mathbf{V}^n$

then: Meet(A, B) $\equiv A \vee B = (A^* \wedge B^*)I$.

 $\overline{A \vee B} = \overline{A} \cap \overline{B}$. In this case:

Note: The meet product is related to the outer product by duality:

 $(A \vee B)I^{-1} = (A^* \wedge B^*)II^{-1} = A^* \wedge B^*$

 $Dual(A \lor B) = Dual(A) \land Dual(B)$

Dual outer product

Dualisation:

$$G \stackrel{*}{\to} G$$
$$x \mapsto x^* = xI^{-1}$$

Dual outer product:

$$G \times G \xrightarrow{I} G \qquad x \vee y = ((xI^{-1}) \wedge (yI^{-1}))I$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$G \times G \xrightarrow{I} G \qquad x^* \wedge y^* = (x \vee y)^*$$

SIGGRAPH

Projective geometry - historical perspective 1-d subspace parallell to the ground plane point at infinity eye parallell lines point ground plane 1-dim subspace through the eye

n-dimensional projective space Pⁿ

 $\mathbf{P}^n = \mathbf{P}(\mathbf{V}^{n+1})$ = the set of non-zero subspaces of \mathbf{V}^{n+1} .

A *point* p is a 1-dim subspace (spanned by a 1-blade a).

$$p = \overline{a} = \{ \mathbf{1}a : \mathbf{1} \neq 0 \} + \mathbf{a} + \mathbf{a}a , \mathbf{a} \neq 0.$$

A $\it line l$ is a 2-dim subspace (spanned by a 2-blade $\it B_{\rm 2}$).

$$l = \overline{B}_2 = \{ \boldsymbol{l} B_2 : \boldsymbol{l} \neq 0 \} \hat{\boldsymbol{A}} B_2.$$

Let B denote the set of non-zero blades of the geometric algebra $\,G(V^{^{n+1}})$. Hence we have the mapping

$$\mathbf{B} \otimes B \stackrel{\longrightarrow}{\longrightarrow} B \otimes \mathbf{P}^n$$
.

Pascal's theorem Let a,b,c,a',b' be five given points in \mathbf{P}^2 . Consider the second degree polynomial given by $p(x) = ((a \land b') \lor (a' \land b)) \land$ $((b \land x) \lor (b' \land c)) \land$ $((c \land a') \lor (x \land a))$. It is obvious that p(a) = p(b) = 0and easy to verify that p(c) = p(a') = p(b') = 0. Hence: p(x) = 0 must be the equation of the conic on the 5 given points.

The induced outermorphism

Let $T: \mathbf{V} \to \mathbf{V}$ denote a linear mapping.

Fact: T induces an *outermorphism* $T: \mathbf{G} \to \mathbf{G}$ given by

$$T(a_1 \wedge ... \wedge a_k) = T(a_1) \wedge ... \wedge T(a_k)$$

 $T(\mathbf{1}) = \mathbf{1}$, $\mathbf{1} \in \mathbf{R}$

and linear extension.

Interpretation: \underline{T} maps the *blades* of V

in accordance with how

T maps the *vectors* of $\overline{\mathbf{V}}$.

SIGGRAPH

Polarization with respect to a quadric in P

Let $T: \mathbf{V}^{n+1} \to \mathbf{V}^{n+1}$ denote a *symmetric* linear map, which means that $T(x) \cdot y = x \cdot T(y)$, $\forall x, y \in \mathbf{V}^{n+1}$.

The corresponding quadric (hyper)surface Q in \mathbf{P}^n is given by $Q = \{x \in \mathbf{V}^{n+1} : x \cdot T(x) = 0, x \neq 0\}$.

<u>Def</u>: The *polar* of the *k*-blade A with respect to Q is the (n+1-k)-blade defined by

$$\operatorname{Pol}_{o}(A) \equiv \underline{T}(A)^{*} \equiv \underline{T}(A)I_{\cdot}^{-1}$$

SIGGRAPH

Polarization (cont.)

Note: $T = id \Rightarrow Q = \{x \in \mathbf{V}^{n+1} : x \cdot x = 0, x \neq 0\}$

In this case $\operatorname{Pol}_{\mathcal{Q}}(A) \equiv AI^{-1} \equiv A^*$

and polarization becomes identical to dualization.

Fact: For a blade A we have

(i) $\operatorname{Pol}_{\varrho}(\operatorname{Pol}_{\varrho}(A)) \not = A$

(ii) If A is tangent to Q

then $\operatorname{Pol}_{\varrho}(A)$ is tangent to Q.

Especially: If x is a point on Q,

then $\operatorname{Pol}_{\mathcal{O}}(\mathcal{X})$ is the hyperplane

which is tangent to Q at the point x.

Polar reciprocity

Let $x, y \in \mathbf{V}^{n+1}$ represent two points in \mathbf{P}^n . Then we have from the symmetry of T:

$$y \wedge T(x)^{*} = y \wedge (T(x)I^{-1})$$

= $(y \cdot T(x))I^{-1} = (x \cdot T(y))I^{-1}$
= $x \wedge (T(y)I^{-1}) = x \wedge T(y)^{*}$.

Hence: $y \wedge Pol_o(x) = 0 \iff x \wedge Pol_o(y) = 0$ i.e. the point y lies on the polar of the point xif and only if x lies on the polar of y.

SIGGRAPH

The dual map

Let $f: \mathbf{G} \to \mathbf{G}$ be linear, and assume that $I^2 \neq 0$.

$$\tilde{f}(x) = f(xI)I^{-1}$$

Note:
$$f(x) = \tilde{f}(xI^{-1})I = \tilde{f}(xI^{-1})I^2I^{-2}I$$

= $\tilde{f}(xI^{-1}I^2)I^{-1} = \tilde{f}(xI)I^{-1} = \tilde{\tilde{f}}(x)$

SIGGRAPH

Polarizing a quadric with respect to another

Let $S: \mathbf{G} \to \mathbf{G}$ and $T: \mathbf{G} \to \mathbf{G}$ be symmetric outermorphisms, and let

$$P = \{x \in \mathbf{G} : x * S(x) = 0, x \neq 0\},\$$

 $Q = \{x \in \mathbf{G} : x * T(x) = 0, x \neq 0\}$ be the corresponding two quadrics.

Polarizing the multivectors of the quadric PFact: with respect to the quadric Q

gives a quadric R

with equation $x * (T \circ \tilde{S} \circ T(x)) = 0$

and we have $x \in P \iff \operatorname{Pol}_{o}(x) \in R$.

Reflection in a plane-curve mirror (cont.)

Making use of the intersection formula deduced earlier and introducing $n=\frac{\hbar}{|\vec{h}|}$ for the unit mirror normal we get

$$q - m = \frac{((p - m) \cdot t)t - (p - m) \cdot n)n}{1 - 2|\vec{m}(p - m) \cdot n}$$

This is an expression of Tschirnhausen's reflection law.

SIGGRAPH

References:

Hestenes, D. & Ziegler, R., Projective Geometry with Clifford Algebra, Acta Applicandae Mathematicae 23, pp. 25-63, 1991.

Naeve, A. & Svensson, L., Geo-Metric-Affine-Projective Unification, Sommer (ed.), Geometric Computations with Clifford Algebra, Chapter 5, pp.99-119, Springer, 2000.

Winroth, H., Dynamic Projective Geometry, TRITA-NA-99/01, ISSN 0348-2953, ISRN KTH/NA/R--99/01-SE, Dissertation, The Computational Vision and Active Perception Laboratory, Dept. of Numerical Analysis and Computing Science, KTH, Stockholm, March 1999.